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Fig. 1. We present a training method for neural fields that enables linear prefiltering with multiple reconstruction filters. At training time, the neural field

sees parameters of a single symmetric filter. At test time, we support prefiltering a variety of unseen filters (e.g., Box or Lanczos). Here, we show neural fields

trained on an image (with bo�om-right insets of frequency spectrum) and signed distance function using Gaussian filters, with generalization on Box and

Lanczos filters. Images from Adobe FiveK; © original photographers/Adobe. Mesh models from the Stanford 3D Scanning Repository; © Stanford Computer

Graphics Laboratory. (Project page: https://myaldiz.info/assets/spnf/)

Neural �elds excel at representing continuous visual signals but typically op-
erate at a single, �xed resolution. We present a simple yet powerful method
to optimize neural �elds that can be pre�ltered in a single forward pass. Key
innovations and features include: (1) We perform convolutional �ltering in
the input domain by analytically scaling Fourier feature embeddings with
the �lter’s frequency response. (2) This closed-form modulation generalizes
beyond Gaussian �ltering and supports other parametric �lters (Box and
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single-sample Monte Carlo estimates of the �ltered signal. Our method is
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straints on the network architecture. We show quantitative and qualitative
improvements over existing methods for neural-�eld �ltering.
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1 Introduction

Neural �elds are now widely adopted in visual computing [Xie et al.
2022]. They are used as continuous functions that map coordinates
from an input domain (e.g., pixel locations) to the corresponding
signal values (e.g., radiance). Generally, they provide point-wise es-
timates of the signal. As such, naively upsampling or downsampling
the neural �eld produces sampling artifacts, preventing applications
such as mipmapping. Previous works [Fathony et al. 2020; Lindell
et al. 2022; Mujkanovic et al. 2024] aim to address the demand for
resolution-aware neural �elds. These methods impose signi�cant
restrictions on their network architectures, and often are restricted
to a speci�c type of �lter like Gaussian. In contrast, many graphics
applications, require alternative �lters that trade between sharp-
ness and ringing. We propose a method for �tting neural �elds that
enables accurate �ltering with a variety of low-pass symmetric re-
construction kernels, while imposing few constraints on the neural
network architecture. Given the parameters of a �lter and a spatial
coordinate, our network predicts �ltered signal values in a single
evaluation (Fig. 1).

Our key idea is to integrate the Fourier feature encoding [Tancik
et al. 2020] and derive an analytical formula to modify the coe�-
cients. We show that by supervising the network with one type of
low-pass �lter (e.g., Gaussian), it naturally generalizes to di�erent
types of low-pass �lters (e.g., Box or Lanczos). We estimate the �l-
tered signal and train the network with a Monte Carlo estimator of
the convolution.
We demonstrate our method for pre�ltering 2D images and 3D

signed distance functions. Since we do not impose any restriction on
the network architecture apart from the Fourier feature encoding,
we achieve signi�cantly higher quality results than prior work [Mu-
jkanovic et al. 2024]. Furthermore, our Monte Carlo estimator only
requires a single sample from the convolution �lter; hence it in-
duces little performance cost during training even when the signal
is expensive to evaluate.

In summary, our contributions are:

(1) An analytical pre�ltering approach for neural �elds using
Fourier feature encoding,

(2) A training regime for pre�ltered neural �elds that generalizes
to a variety of linear and symmetric convolutional �lters.

2 Related Work

Multi-scale representations. Computer graphics and vision meth-
ods often rely on data structures (e.g., mipmapping) that represent
a signal at multiple scales [Williams 1983; Witkin 1987] to avoid
expensive post�ltering. The multi-scale representations can be use-
ful for texture �ltering [Greene and Heckbert 1986; Heckbert 1989;
Williams 1983], image processing [Adelson et al. 1984; Lowe 2004],
level of detail [Hoppe 1996], and multi-resolution editing of geom-
etry [Zorin et al. 1997]. Our work shares the same motivation as
early texture �ltering works. Post-�ltering neural �elds requires
approximating the �ltering integral through either a) cubature dis-
cretization; which is both memory and compute expensive or b)
Monte Carlo sampling, which results in excessive noise (see Fig. 2)
We focus on building a multi-scale representation of a single-pass

MLP Predicted

Noisy Estimate1 MC Sampling

Fig. 2. Method Overview. Our method rests on two key ideas: (i) using

the analytic Fourier transform (F) of a symmetric linear filtering kernel to

modulate Fourier-feature embeddings, and (ii) using single-sample Monte

Carlo (1 MC) estimates of the filtered signal for supervision. A neural field

trained with one filter type 6train, generalizes to unseen filters 6test. Images

from Adobe FiveK; © original photographers/Adobe.

coordinate neural network [Song et al. 2015] for a given �ltering
kernel.

Neural �elds. Neural �elds compactly represent continuous sig-
nals using multilayer perceptrons conditioned on spatial coordi-
nates [Xie et al. 2022]. Their versatility makes them appealing for
representing images [Belhe et al. 2023; Song et al. 2015], geome-
try [Park et al. 2019; Sivaram et al. 2024], light �elds [Sitzmann et al.
2021], radiance �elds [Mildenhall et al. 2021], and spatially varying
re�ectance [Bi et al. 2020; Rainer et al. 2019].

Input embeddings. Directly mapping coordinates to the output
using a neural network can fail to represent high-frequency details
due to the spectral bias of multilayer perceptrons [Rahaman et al.
2019]. To alleviate this, modern approaches often map spatial coor-
dinates through diverse activations as embeddings (e.g., Gaussian,
sine) [Rahimi and Recht 2007; Stanley 2007; Vaswani et al. 2017]. In
this work, we focus on the Fourier feature mapping introduced by
Tancik et al. [2020], which encodes input coordinates using sines
and cosines at multiple frequencies. We show that this representa-
tion enables the derivation of closed-form expressions for modifying
feature weightings in accordance with a given �lter kernel, leading
to signi�cant improvements in �ltering accuracy.

Scale-aware neural rendering. Mip-NeRF [Barron et al. 2021] in-
troduced conical ray integration to reduce aliasing via scale-aware
positional encodings. Zip-NeRF [Barron et al. 2023], Tri-MipRF [Hu
et al. 2023], and Rip-NeRF [Liu et al. 2024] extend this idea using
hierarchical grids, mipmaps, and directional ripmaps. These meth-
ods optimize a photometric loss on down-sampled training images.
They focus on anti-aliasing in radiance �elds, but lack extensive
analysis on whether internal signals such as volumetric density are
correctly �ltered, nor can they change the �ltering at test-time.

Learned multi-scale representations. Song et al. [2015] represent
a multilayer-perceptron-based mipmap using coordinates (G,~, ;)
where ; is a continuous mipmapping level. Recently, several neural
multi-scale representations are proposed [Fathony et al. 2020; Lin-
dell et al. 2022; Saragadam et al. 2022; Shekarforoush et al. 2022; Yang
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et al. 2022]. However, they typically put signi�cant constraints on
the network architectures, and can only handle limited anisotropy.
Beyond multi-scale architectures, Xu et al. [2022] directly learn
operators that act on the neural �elds. Nsampi et al. [2023] derive
continuous convolutions for neural �elds by convolving repeated
derivatives of the kernel with repeated antiderivatives of the sig-
nal, which is exact for piecewise-polynomial kernels [Nsampi et al.
2023]. Lindell et al. [2022] directly modify the network architecture
to handle box-�ltering and Gaussian-�ltering but their method is
not continuous in �lter space. Closest to our work, NGSSF [Mu-
jkanovic et al. 2024] learns an anisotropic Gaussian scale-space via
a scale-conditioned MLP, but remains restricted to Gaussian �lters
and relies on Lipschitz regularization plus a calibration stage for
continuous smoothing. In contrast, our approach uses frequency-
aware Fourier features and a single-sample Monte Carlo estimator
to achieve �lter-agnostic and anisotropic pre�ltering without fur-
ther architectural constraints, resulting in both greater �exibility
and superior reconstruction quality.

3 Background

Let x ∈ R
38 be a 38 -dimensional input coordinate, and consider a

continuous signal 5 : R38 → R
3> , where 38 and 3> are typically

small (e.g., 38 = 2, 3> = 3 for RGB images, and 38 = 3, 3> = 1 for a
signed-distance �eld). A neural �eld approximates this signal:

�\ (x) ≈ 5 (x), (1)

where \ are the learned parameters. To incorporate a �lter  pa-
rameterized by a parameter Σ (e.g., a Gaussian kernel) the �ltered
signal is de�ned as the following convolution:

5 ,Σ (x) ¤= ( Σ ∗ 5 ) (x) =
∫

 Σ
(

x − x
′) 5 (x′) dx′ . (2)

Throughout this paper, we assume the spatial kernel  Σ is sym-

metric, i.e.,  Σ (x) =  Σ (−x). After Fourier transform, its frequency
response F { Σ}(8) is therefore real and even, yielding zero phase
shift which simpli�es our frequency representation (see Sec. 4.1).
In the anisotropic �lter case, symmetry still holds, but magnitude
varies by direction (e.g., elliptical Gaussian).

Conventionally, �ltering a signal can be done through Monte
Carlo estimation of the convolution integral [Hermosilla et al. 2018].
Naive Monte Carlo estimation for �ltering neural �elds su�ers from
two standard drawbacks, (i) high variance and (ii) reliance on full
network evaluation for each Monte Carlo sample, making it expen-
sive. To address these limitations, we seek to pre�lter neural �elds
with a single compact model that approximates the �ltered signal:

� ,Σ (x;\ ) ≈ 5 ,Σ (x). (3)

Our goal is to learn the neural �eld such that it produces �ltered
output in a single forward pass and is continuous in the parameter
space Σ.
A common way to avoid per-query integration at inference is

to relocate the convolution to the input features, i.e., convolve the
embedding once and then feed it to the network. Prior works [Barron
et al. 2021; Liu et al. 2024; Wu et al. 2024] learn integrated input
feature embeddings (e.g., positional encoding [Vaswani et al. 2017],
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Fig. 3. 1D Example. Given a discretely sampled 1D signal and a finite set of

uniformly sampled Gaussian kernels, we train a neural field to encode the

continuous scale space of the signal (top). By modulating the Fourier feature

embeddings as per § 4.1, we prefilter the neural field with Box (middle) and

Lanczos (bo�om) filters with no additional supervision.

hashgrids, etc.) to �lter neural �elds:

W ,Σ (x) =
∫

 Σ
(

x − x
′) W ′ (x′) dx′ . (4)

Here, W ′ is a feature embedding at original resolution and W (·, Σ) is
the convolved embedding. These features are then passed through
the network (MLP) to approximate the �ltered signal in one pass:

� ,Σ (x;\ ) = MLP\
(

W ,Σ (x)
)

. (5)

We build on the feature-space view in Equations (4)–(5): we choose
an embedding whose convolution with  Σ is available in closed
form, enabling a single-pass �ltered output. We develop this idea
further in Section 4.1, showing how it generalizes beyond a single
kernel to other symmetric �lter families with continuous control
over Σ.

4 Method

Given a symmetric kernel  Σ, our method: (i) pre�lters Fourier fea-
tures that are subsequently used by a neural network to predict the
�ltered signal; (ii) trains on a single-sample Monte Carlo estimate
of ( Σ ∗ 5 ) (Sec. 4.2). Implementation details are provided in Sec-
tion 4.3. At test time, the same model supports arbitrary covariance
Σ (isotropic or anisotropic) and previously unseen �lters, such as
Box and Lanczos, in a single forward pass (see Fig. 2).
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4.1 Prefiltering Fourier Features

Our goal is to use a feature encoding W ′ (x) with the following two
properties:

(1) Closed-form �ltering. Convolution of W ′ with a given �lter
can be computed analytically, avoiding the runtime overhead
and accuracy tradeo�s of Monte Carlo (MC) or quadrature-
based methods.

(2) Spectral-bias control. The proposed encoding ensures ro-
bustness to MC noise during training and provides a direct
mechanism to tune the MLP’s sensitivity to di�erent fre-
quency bands.

Random Fourier feature embeddings meet these requirements:

W ′ (x) =
[

08 cos(2c b
⊤
8 x), 08 sin(2c b

⊤
8 x)

]<

8=1
, (6)

where the choice of frequencies {b8 } and amplitudes {08 } controls
the spectral bias [Tancik et al. 2020]. In this work, we extend this
idea by deriving an exact, �lter-dependent modulation of {08 }, giv-
ing precise control over the network-output’s frequency spectrum.
Consistent with Equation (4) in Section 3, we instantiate W (x, Σ) by
exactly convolving this embedding with  Σ.
In Equation (6), each entry 68 of W ′ (x) is a sinusoid at frequency

b8 , whose spectrum is a pair of impulses at ±b8 . By the convolution
theorem,

F { Σ ∗ 68 } = F { Σ} · F {68 }. (7)

For a symmetric kernel, F { Σ} is real and even, so multiplying the
two impulses at ±b8 by F { Σ}(b8 ) only rescales the amplitude (no
phase change). Inverting the transform gives:

( Σ ∗ 68 ) (x) = F { Σ}(b8 ) 68 (x). (8)

Thus feature-space convolution amounts to scaling each cosine/sine
pair at b8 by the �lter’s magnitude at that frequency. We set the
Fourier-feature amplitudes to the kernel’s magnitude at each fre-
quency,

08 ( Σ) = F { Σ}(b8 ) . (9)

Using Equation (6) with 08 = 08 ( Σ) yields an embedding whose
convolution with  Σ is exact. When supervised with an estimate
of the �ltered signal, the network learns to condition on this pre-
�ltered embedding so that a single forward pass outputs ( Σ ∗ 5 ) (G).
Matching 08 to F { Σ}(b8 ) provides direct spectral-bias control.

Kernel-speci�c magnitudes. We now list the closed-form 08 ( Σ)
used in this paper. Given that Σ ∈ R

=×= is a symmetric posi-
tive–de�nite covariance matrix, we extend 1D kernels (Gaussian,
Box, Lanczos) to =D by evaluating them at the Mahalanobis dis-

tance ∥x∥Σ =

√
x⊤Σ−1 x, yielding anisotropic =D �lters. We provide

full derivations and constants in the supplemental material. For a
Gaussian kernel:

08 ( Σ) = exp
(

−2c2b⊤8 Σb8
)

. (10)

For an =-dimensional Box kernel, where �=/2 is the Bessel function
and Γ is the Gamma function:

08 ( Σ) =
Γ
(=
2 + 1

)

c=/2

�=/2
(

2c
√

b⊤8 Σb8
)

(√

b⊤8 Σb8
)=/2 . (11)

For a Lanczos kernel, let ? > 0 denote the Lanczos order (we use
? to avoid a clash with the Fourier–feature weights 08 ), The Fourier
transform of the =D Lanczos kernel is then:

08 ( Σ) =
?

I=
max

(

min
(? + 1

2?
−
√

b⊤8 Σb8 , min(1, 1
?
)
)

, 0
)

. (12)

The constant I= is a dimension = dependent normalization factor
for the Lanczos kernel. Finally, following Equation (5) in Section 3,
we pass the convolved features through the network to approximate
the �ltered signal.

As an illustration, consider the toy example in Fig. 3, where we en-
code the scale-space of a 1D signal in a neural �eld. We analytically
integrate the Fourier features for a given �ltering kernel, which acts
as proxy for pre�ltering the signal. We observe that using the pro-
posed feature encoding modulation (Eq. (9)), enables pre�ltering the
neural �eld with additional �lters without �ne-tuning or re-training
the MLP network.

4.2 Monte Carlo–Based Training

The previous section de�nes a deterministic, �lter-conditioned en-
coding W ,Σ (x). In our training scheme, we optimize only the MLP
parameters \ to map W ,Σ (x) to the �ltered signal; the encoding
itself is �xed given (x,  , Σ).

Most scale-aware neural-�eld methods avoid explicit or approxi-
mated convolution of the ground truth signal by baking the �lter,
either directly into the dataset (via precomputation) or by incorpo-
rating the �lter into the network architecture. While these methods
show good results, they nonetheless come with limitations as dis-
cussed in Section 2.

Objective and estimator. An unbiased estimate of the exact convo-
lution can be given via Monte Carlo estimation; we draw # samples
{x′8 } from a probability distribution ? (· | x) centered at the point of
convolution x,

5 ,Σ (x) = E
x′∼? ( · |G )

[

 Σ (x − x
′)

? (x′ |x) 5 (x′)
]

(13)

≈ 1

#

#
∑

8=1

 Σ (x − x
′
8 )

? (x′ |x) 5 (x′8 ), x
′
8 ∼ ? (· | x) . (14)

We choose the density ? to be proportional to | Σ |. However, a low-
variance estimate given by dense multi-sampling is prohibitively
slow. We therefore train with a single Monte Carlo sample (#=1) at
each iteration.

Sampling procedure. During training, we uniformly sample a
batch of coordinates x from the valid signal area, and we sample
positive semide�nite covariances Σ by drawing principal variances
uniformly in log-space with a random rotation.

(i) Given a �lter (Gaussian, Box, Lanczos), we �rst normalize the
�lter | Σ |, treat it as a distribution and sample x

′. Distributions
of Gaussian and Box �lters yield normal and uniform sampling
respectively, which is easy to sample. For Lanczos �lter, we use
rejection sampling, and cache those samples. During training and
evaluation of Lanczos �lter, we draw cached samples at random and
stretch them according to the covariance.
(ii) Next, we sample the corresponding signal at 5 (x′) as a MC

estimate of the signal. Our single-sample Monte Carlo training is
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similar to the coordinate perturbation introduced by Ling et al.
[2025] (See Eq. (15)). We also perturb the sampling coordinate, but
unlike their method, we modulate the encoding according to the
kernel  Σ.

4.3 Implementation Details

We use standard settings for stable single-sample training.

Optimizer and schedule. We use Adam [Kingma and Ba 2014] for
its robustness to noise. We found that an exponential learning-rate
decay is critical: larger early steps drive progress despite target noise,
while smaller later steps average out variance. In our experiments,
adding exponential decay to 14−3 times of the original learning rate
improved PSNR (e.g., +2.19 dB on Alien) and reduced speckle. After
sweeping learning rates from 5×10−5 to 5×10−1, stochastic gradient
descent (with/without momentum) either converged to poor minima
or diverged, so we adopt Adam with learning rate 5 × 10−4 with
batch size 100: for images and 200: for SDF by default.

Loss. We minimize the minibatch MSE between the MLP on the
pre�ltered encoding and a single-sample MC target:

L̂ =

1

|B|
∑

(x, ,Σ) ∈B








MLP\
(

W ,Σ (x)
)

−  Σ (x − x
′)

? (x′ | x,  Σ)
5 (x′)










2

2
,

x
′ ∼ ? (· | x,  Σ) ∝ | Σ |.

(15)

Because the MC target is unbiased for ( Σ ∗ 5 ) (x), this MSE is an
unbiased objective. For datasets with heavy-tailed, high-dynamic-
range noise, one can instead explore objectives from Noise2Noise
that down-weight extreme outliers [Mansour and Heckel 2023].

Architecture details. Unless otherwise noted, we follow the con�g-
uration from NGSSF [Mujkanovic et al. 2024]: a 3-layer multi-layer
perceptron of width 1024 and (<=512) 1024 channel Fourier features.
We use a basis scale of 2000 for images and 40 for SDFs. The Fourier
basis scale should match the signal’s frequency distribution: if set
too small, the model is biased toward low frequencies (under�tting
high-frequency detail); if set too large, it over-emphasizes high-
frequency noise due to MC sampling. We found that our Fourier
feature pre�ltering helps suppress the noise since it biases updates
towards low-frequency content.

5 Results

We �rst compare against prior methods under Gaussian smoothing
(Sec. 5.1). We then study generalization to other �lter families, Box
and Lanczos (Sec. 5.2).

We evaluate on images and signed distance �elds (SDFs). For im-
ages, we follow the NGSSF evaluation benchmark [Mujkanovic et al.
2024] on 100 high-resolution 2048 × 2048 Adobe FiveK images [By-
chkovsky et al. 2011]. We treat signals as periodic and evaluate
pixels whose convolution windows lie within the image boundaries.
We report PSNR (Peak Signal-to-Noise Ratio), SSIM [Wang et al.
2004], and LPIPS [Zhang et al. 2018].
For SDFs, following the NGSSF benchmark [Mujkanovic et al.

2024] and training coordinate sampling, we voxelize meshes into
SDFs at 10243 during training and 2563 at test time. We extend the
ground truth SDF values 1.2 times beyond the normalized coordi-
nates, calculate �ltered �elds, and again crop borders. We use the

Lucy, Dragon, Thai Statue, and Armadillo meshes from the Stanford
3D Scanning Repository (models courtesy of the © Stanford Com-
puter Graphics Laboratory). We report MSE (Mean Squared Error),
Chamfer distance [Fan et al. 2017], and IoU [Mescheder et al. 2019].

5.1 Gaussian Filtering

Image �ltering. We report quantitative results for Gaussian smooth-
ing in Table 1 (isotropic) and Table 2 (anisotropic). In addition, the
�rst two rows (Gaussian) and �rst two columns (NGSSF and Trained
w/ Gaussian) of Figure 6 show qualitative comparisons. We include
additional qualitative results in the supplemental material.
In the isotropic setting, against the most relevant continuous-

scale baselines—NFC [Nsampi et al. 2023] and NGSSF [Mujkanovic
et al. 2024]—our method improves PSNR at least by +4.9 to +13.4 dB
across scales. It also outperforms discrete-scale architectures (BA-
CON [Lindell et al. 2022], MINER [Saragadam et al. 2022], INSP [Xu
et al. 2022]) when �ltering at varying scales. MINER gives higher
PSNR on the un�ltered signal only (f2=0; +2.96 dB), which re�ects
di�erences in representation capacity rather than �ltering behavior.
For anisotropic Gaussian smoothing, our method yields large,

consistent gains over all baselines (Table 2; see also the Gaussian
rows/columns in Figure 6). Quantitatively, we improve PSNR by
+14.5 dB over NGSSF [Mujkanovic et al. 2024] (49.33 vs. 34.82 dB),
and by +19.0/+25.2 dB over NFC [Nsampi et al. 2023]/PNF [Yang
et al. 2022] respectively, with corresponding LPIPS and SSIM also
best (e.g., LPIPS 0.054 vs. 0.069 for NGSSF; SSIM 0.991 vs. 0.940).

Among prior methods, NGSSF is the strongest baseline for Gauss-
ian �ltering in both isotropic and anisotropic settings. However,
its calibration scheme does not perfectly match the ground-truth
�ltering magnitude across scales and under�ts frequency content
which is visible near edges of the �ltered signal.

SDF smoothing. We present the quantitative results of isotropic
and anisotropic Gaussian �ltering of SDFs in Tables 3 and 4 respec-
tively. Also the �rst row (Gaussian) of Figure 7 shows qualitative
SDF results.
Across isotropic kernels (Table 3), our method gives the best

overall geometry—lowest Chamfer distance and highest IoU—at
all non-zero blur levels. MINER reports the lowest MSE at f2 ∈
{0, 10−4, 10−3} and NFC has the lowest MSE at f2=10−2, but both
either lack continuity in f2 or degrade geometry (higher Chamfer,
lower IoU). In contrast, our model remains continuous in �lter space
and preserves geometry across scales. For anisotropic kernels (Ta-
ble 4), our method improves over NGSSF and NFC by large margins
on all metrics (e.g., MSE 2.2×10−5 vs. 2.8×10−3 for NGSSF; Chamfer
3.6×10−3 vs. 1.2×10−1; IoU 0.83 vs. 0.42), removing streaking and
�oaters while matching the ground-truth shape more closely.

5.2 Filter Generalization

We test generalization across low-pass �lter families, Gaussian, Box,
and Lanczos, under two training schemes: (i) training with a single
�lter family and evaluating on the others, and (ii) training jointly
with multiple �lter families, Gaussian, Box, and Lanczos, at each
iteration. (See also the 1D example in Fig. 3).
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Table 1. Image filtering with isotropic Gaussian kernels.We test our model across isotropic kernels by averaging metrics across 100 images on 4(+original signal)
di�erent isotropic kernels. Indicated by f2-cont., the NGSSF [Mujkanovic et al. 2024] and NFC [Nsampi et al. 2023] baselines are the only other methods

that operate continuously in isotropic scale space. Other methods, namely BACON [Lindell et al. 2022], MINER [Saragadam et al. 2022], INSP [Xu et al.

2022], illustrate the tradeo� between changing the network architecture and filtering quality. Best and second best are bold and underlined. Our method

outperforms these alternatives on filtering with changing scales. While MINER yields marginally higher PSNR at representing the original signal, it lacks

continuous control over f2 scale space.

Method f2-cont.
f2 = 0 f2 = 10−4 f2 = 10−3 f2 = 10−2 f2 = 10−1

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

BACON [2022] ✗ 32.89 0.308 0.823 38.95 0.235 0.955 36.48 0.123 0.953 30.59 0.086 0.895 25.36 0.100 0.601
MINER [2022] ✗ 41.19 0.088 0.963 37.38 0.259 0.945 36.99 0.097 0.959 25.89 0.205 0.815 24.38 0.156 0.567
INSP [2022] ✗ 30.57 0.454 0.770 30.14 0.420 0.838 23.77 0.546 0.725 20.75 0.546 0.627 23.37 0.381 0.633
NFC [2023] ✓ 20.75 0.703 0.533 26.49 0.224 0.839 36.05 0.071 0.949 39.74 0.011 0.965 41.06 0.006 0.965
NGSSF [2024] ✓ 33.85 0.305 0.854 35.05 0.207 0.942 34.74 0.077 0.954 35.06 0.023 0.949 34.99 0.020 0.878
Ours ✓ 38.23 0.193 0.918 43.83 0.192 0.971 48.91 0.064 0.991 53.09 0.009 0.997 53.81 0.005 0.997

Table 2. Image filtering with anisotropic Gaussian kernels.We test our model

across anisotropic kernels by averaging metrics across 100 images on 100

di�erent anisotropic kernels with varying scales and orientations. Best

scores are bold. We achieve greater accuracy on all metrics compared to

prior work while remaining continuous in filter space.

Σ-cont. PSNR↑ LPIPS↓ SSIM↑
PNF [2022] ✗ 24.15 0.571 0.704
NFC [2023] ✗ 30.31 0.094 0.857
NGSSF [2024] ✓ 34.82 0.069 0.940
Ours ✓ 49.33 0.054 0.991

Baselines. Neural Field Convolutions (NFC) [Nsampi et al. 2023]
models a �lter as a sparse set of Dirac impulses, interpolated through
a piecewise-polynomial approximation to the target kernel. This
construction yields continuity in isotropic and axis-aligned settings,
but for general anisotropic kernels, it requires re-optimizing Dirac
locations and weights for each covariance. Therefore, the represen-
tation is not continuous across anisotropic scale space. In practice,
following the prescribed guidelines, we use piecewise-linear kernels
only for 2D isotropic comparisons; for anisotropic cases, piecewise-
constant kernels are required because higher-order models fail to
optimize reliably. Evenwith substantial per-kernel tuning, represent-
ing non-polynomial �lter families (e.g., Gaussian and Lanczos) and
highly anisotropic �lters remain limited by the NFC construction
(see the optimized Dirac deltas in Fig. 6).

Neural Gaussian Scale-Space Fields (NGSSF) [Mujkanovic et al.
2024] learns a scale-conditioned MLP that is well suited to general
low-pass �ltering. However, it does not provide an explicit control
to switch the type of smoothing at test time. To compare across fam-
ilies, we therefore recalibrate NGSSF’s encoding with a Monte Carlo
estimate of the �ltered signal for the target family. While this calibra-
tion aligns the overall spectral shape, the nature of the smoothing
(e.g., Gaussian, Box, and Lanczos), it is not directly controllable and
residual estimation errors remain (see Fig. 6).

Results on images. We assess generalization for the image regres-

sion experiments quantitatively in Table 5 and qualitatively in Fig-
ure 6. For this task, frequency characteristics are most visible in the

frequency-domain insets (bottom right of each panel; see also Figs. 1
and 6). Single-family training already generalizes well to the other
families; joint training provides only marginal gains. The Lanczos
frequency response closely matches the reference spectrum with
or without Lanczos-speci�c training (See supplemental material for
more examples). However, errors in the Lanczos �lter overall are
higher than those in the other �lters.

Results on SDFs. We present generalization capabilities of our
model for SDFs in Figure 7. Our model matches overall smoothing
shape and characteristics of each �lter, and achieves perceptually
convincing results. Fine-scale artifacts persist in some cases, which
we attribute to training with higher MC variance on SDFs. Impor-
tance sampling high-variance regions such as sharp surface changes
and better tuning Fourier basis scale to match signal frequency
characteristics (see Sec. 4.3) help mitigate these artifacts.

Summary. Across both images and SDFs, our model trained with
frequency-modulated features supports Gaussian, Box, and Lanczos
�lteringwith anisotropic covariances in single forward pass, without
architectural changes. Compared to NFC’s Dirac-impulse parame-
terization (capacity-limited and not continuous in anisotropic scale
space) and NGSSF’s Gaussian-speci�c design (recalibration needed
and no explicit kernel family control), our approach exposes the
frequency response directly in the input encoding, which enables
cross-family generalization and controllable smoothing at test time.

5.3 Ablations

In this section, we investigate design choices of our method and
ablate them to observe their e�ectiveness. For each of these ablations,
the model and the experiment parameters were the same as before.

Model parameters. To assess which components matter most for
(i) reconstructing the original signal, (ii) isotropic �ltering, and (iii)
anisotropic �ltering, we run ablations in Figure 4 by varying the
Fourier-feature (embedding) size, theMLP hiddenwidth, and the net-
work depth. Although the model can reconstruct the original signal
with relatively small embeddings (e.g., NeRF uses<=10 [Mildenhall
et al. 2021]), the embedding size is the most sensitive factor for �lter-
ing performance. Increasing hidden width also helps across all tests,
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Table 3. SDF filtering with isotropic Gaussian kernels. Metrics are averaged over Lucy, Dragon, Thai Statue, Armadillo SDFs. Columns correspond to f2 ∈
{0, 10−4, 10−3, 10−2}; f2

=0 denotes unfiltered reconstruction. “f2-cont.” indicates continuity w.r.t. the scalar variance. Best and second best are bold and

underlined. MINER reports the lowest MSE at f2 ∈ {0, 10−4, 10−3} and NFC at f2
=10−2, whereas our method yields the best geometry—lowest Chamfer and

highest IoU—at all non-zero blur levels while remaining continuous in f2.

Method f2-cont.
f2 = 0 f2 = 10−4 f2 = 10−3 f2 = 10−2

MSE↓ Cham.↓ IoU↑ MSE↓ Cham.↓ IoU↑ MSE↓ Cham.↓ IoU↑ MSE↓ Cham.↓ IoU↑

BACON [2022] ✗ 2.5e-3 1.3e-3 0.99 4.0e-3 2.2e-3 0.97 8.3e-2 1.5e-2 0.84 2.6e-4 4.9e-2 0.53
MINER [2022] ✗ 1.6e-7 1.1e-3 0.98 3.3e-7 1.4e-3 0.98 4.1e-6 8.0e-3 0.92 1.8e-4 6.1e-2 0.52
INSP [2022] ✗ 1.2e-1 1.3e-3 0.99 4.3e-2 4.4e-3 0.95 3.6e-2 1.1e-2 0.88 3.1e-2 3.7e-2 0.64
NFC [2023] ✓ 3.7e-3 5.7e-3 0.89 2.5e-5 4.8e-3 0.92 1.4e-5 2.2e-3 0.97 1.0e-5 2.3e-2 0.77
NGSSF [2024] ✓ 8.3e-5 3.9e-3 0.94 6.0e-5 5.5e-3 0.92 6.5e-4 1.6e-2 0.83 1.1e-2 1.3e-1 0.32
Ours ✓ 1.6e-5 1.7e-3 0.98 1.1e-5 1.2e-3 0.98 9.5e-6 1.8e-3 0.98 1.8e-5 3.6e-3 0.95

Table 4. SDF filtering with anisotropic Gaussian kernels.Metrics are averaged

over covariances Σ on 100 di�erent anisotropic kernels with varying scales

and orientations. “Σ-cont.” indicates continuity over the full covariance. Best

scores are bold. Our method achieves greater accuracy on all metrics while

remaining continuous in filter space.

Σ-cont. MSE↓ Cham.↓ IoU↑
NFC [2023] ✗ 7.1e-2 4.6e-1 0.08
NGSSF [2024] ✓ 2.8e-3 1.2e-1 0.42
Ours ✓ 2.2e-5 3.6e-3 0.83
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Fig. 4. Sensitivity Analysis.We evaluate how Fourier-feature embedding size

and network architecture a�ect (1) reconstruction of the original signal, (2)

isotropic smoothing, and (3) anisotropic smoothing. Embedding Size. While

embedding size has relatively smaller e�ect on reconstructing the original

signal, the model benefits substantially from larger embeddings in both

isotropic and anisotropic smoothing tasks. Hidden Dimension. Increasing

the hidden-layer width consistently yields higher PSNR across all tests.

Network Depth. Adding more than three layers provides only marginal PSNR

gains, indicating diminishing returns beyond a depth of three. The bo�om

row shows the PSNR range (highest minus lowest) observed over each

hyperparameter sweep, illustrating the relative sensitivities.

while increasing depth beyond three layers yields only marginal
gains. We perform a depth ablation with matched number of train-
able parameters (see supplemental Fig.), varying network depth, and
�nd that a three or four layer MLP yields the best reconstruction
quality.

Model components. We ablate three components on the Alien im-
age (Figure 5 and Table 6): (i) single-sampleMonte Carlo supervision,
(ii) exact Fourier down-weighting of the input features via F { Σ}
(Sec. 4.1), and (iii) lifting the Lipschitz constraint used by NGSSF.
MC alone yields only small gains in �ltering quality (e.g., isotropic
PSNR 31.35→33.16). Exact Fourier down-weighting is e�ective only
when we train with MC: without MC it changes little, while with
MC it boosts �ltering PSNR to 41.8–42.0 dB. Lifting the Lipschitz
constraint further improves results under MC (cf. rows 4→5 and
6→7). With all three enabled, the model achieves the best scores on
the original and �ltered signals (32.54/43.40/43.60 dB PSNR with the
lowest LPIPS and highest SSIM).

Table 7. E�ect of the number of MC samples. We conduct an image re-

gression experiment using lower-variance estimates of the filtered field,

averaged over 100 anisotropic test-time Gaussian kernels and evaluated

a�er 100,000 training iterations. We observe that, although increasing the

number of Monte Carlo samples substantially reduces the variance of the

signal estimate, this has a minimal impact on the overall quality of the

reconstructed result at convergence.

1 MC 4 MC 16 MC 64 MC 256 MC 1024 MC
PSNR ↑ 43.64 44.32 44.57 44.70 44.68 44.73

Activation function. We integrate our exact Fourier encoding with
a SIREN-style sine activation and achieve 43.43 dB PSNR on the
Alien image under anisotropic smoothing, nearly identical to the
43.40 dB of our ReLU model.

Using a single Monte Carlo sample. Table 7 shows that presenting
the network with a lower-variance estimate of the signal does not
signi�cantly improve the results, which validates our choice of using
a single Monte Carlo sample.
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Table 5. Filter generalization.We train four versions of our image-regression model—one each with Gaussian, Box, and Lanczos filters, plus a “Multiple” model

trained on all three. At test time, we evaluate each model using Gaussian, Box, and Lanczos kernels. The results show that even models trained on single filters

generalize well to unseen filters, nearly matching the quality of training on all filters simultaneously.

Training Filter
Gaussian Box Lanczos

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑
Multiple 43.82 0.128 0.969 40.22 0.111 0.963 39.21 0.104 0.963
Gaussian 44.71 0.127 0.972 40.23 0.111 0.962 37.33 0.106 0.955
Box 43.81 0.125 0.972 41.58 0.113 0.966 36.09 0.108 0.948
Lanczos 38.03 0.128 0.952 35.24 0.120 0.938 41.47 0.107 0.967

Table 6. �antitative Ablation Study on Alien.We analyze the impact of having one Monte Carlo sample, removing the Lipschitz constraint, and using our

exact Fourier modulation. We observe that, while the Lipschitz-constrained MLP achieves be�er filtering without Monte Carlo, li�ing it performs be�er once

single Monte Carlo sampling is enabled. The exact Fourier modulation improves results in all cases. When the three components are enabled, the method

achieves the best results in both original signal fi�ing and filtering.

Monte
Carlo

Lipschitz
Lift

Exact
Fourier

Original Anisotropic Isotropic

PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

✗ ✗ ✗ 26.81 0.157 0.899 32.01 0.205 0.957 31.35 0.183 0.945
✗ ✓ ✗ 29.30 0.046 0.946 22.58 0.374 0.883 21.34 0.331 0.839
✗ ✗ ✓ 26.06 0.169 0.894 31.24 0.197 0.953 30.56 0.172 0.941
✓ ✗ ✗ 25.98 0.166 0.909 32.38 0.405 0.928 33.16 0.296 0.921
✓ ✓ ✗ 31.89 0.032 0.972 36.01 0.350 0.933 37.14 0.183 0.934
✓ ✗ ✓ 27.01 0.127 0.928 42.00 0.185 0.973 41.80 0.159 0.967
✓ ✓ ✓ 32.54 0.025 0.977 43.40 0.180 0.974 43.60 0.150 0.970

6 Limitations

Training/Inference speed. Like all multilayer-perceptron-based
neural �elds, our method incurs higher per-sample evaluation cost
compared to grid-based or other discrete representations (e.g., hash
grids or voxel grids). Compared to NGSSF, removing Lipschitz
bounds reduces the training computation by 38.5% (130ms to 80ms
forward + backward + optimization step). For inference time, our
method is as fast or faster than NGSSF (1.8s), BACON (1.6s), PNF
(5.7s), INSP (189.5s), NFC (63.9s). MINER (0.1s) remains faster at
inference due to its multiple sparse tiny MLPs (0.1s vs 1.8s). This per-
formance gap can limit deployment in real-time or latency-sensitive
applications.

Only Symmetric �lters. Our method relies on the �lter’s Fourier
transform being real and even. Asymmetric �lters introduce phase
shifts that are not captured by our current encoding, so extending
to arbitrary non-symmetric kernels would require modeling and
compensating for phase information.

High-pass �lter support. Our results only indicate performance on
low-pass �lters. A high-pass �lter such as di�erence-of-Gaussians
is readily feasible with our method as the �ltered response can be
achieved as a linear combination of Gaussians with two di�erent
scales. Since our method operates continuously in scale space, any
such parametric combination is supported. We leave the investiga-
tion of supporting arbitrary and asymmetric �lters as future work.

Scope and applicability. In this work we evaluate only MLP-based
neural �elds with ReLU and SIREN-like sinusoidal activations. Our
approach relies on continuous inputs and analytic frequency re-
sponses, and is therefore not directly applicable to grid-parameterized
methods (e.g., multi-resolution or voxel/tensor grids) without addi-
tional changes. Extending the method to such grids is outside the
scope of this paper.

Scope of analysis. We focus on the empirical evaluation of our
training scheme and its practical generalization to unseen �lters.
A theoretical investigation into why Fourier-feature modulation
so e�ectively represents multi-scale signals, and establishing the
conditions under which it provably converges represent a promising
future direction.

7 Conclusion

We have presented a simple yet powerful framework for pre�ltering
neural �elds in the frequency domain by analytically modulating
Fourier–feature embeddings with a family of symmetric �lter ker-
nels. By integrating a closed-form expression for the �lter’s fre-
quency response into the �rst layer of a multi-layer perceptron and
supervising with single-sample Monte Carlo estimates, our method
supports continuous Gaussian, Box, and Lanczos �lters, even those
unseen at training time, without imposing architectural constraints
or relying on precomputed multiscale datasets. Extensive experi-
ments on 2D images and 3D signed-distance �elds demonstrate that
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Fig. 5. E�ect of exact Fourier modulation. We show the impact of exact

Fourier modulation on the Alien image. The inset on the right bo�om

represents the frequency spectrum of the image. Our model produces much

smoother filtering results when encoding is exactly modulated to match

the filter’s Fourier transform.

our approach delivers higher �delity and generality than prior scale-
aware neural-�eld methods, while remaining memory-e�cient and
straightforward to implement.

Acknowledgments

We thank Jaiden Ekgasit for help with �gure preparation; Baha Eren
Yaldiz for running experiments; and Yash Belhe, Sina Nabizadeh,
Zilu Li, Kaiwen Jiang, Wesley Chang, Alex Trevithick, and Sumanth
Varambally for comments and discussions. We also thank the anony-
mous reviewers for their extensive comments that greatly improved
the clarity and analysis in the �nal paper.

This work was supported in part by ONR grant N00014-23-1-2526;
NSF grants (2110409, 2212085, 2042583, 2238839); the European
Research Council (ERC) Advanced Grant NERPHYS (101141721,
https://project.inria.fr/nerphys/); gifts from Adobe, Google, and

Qualcomm; the Ronald L. Graham Chair; and the UC San Diego
Center for Visual Computing. We also acknowledge NSF grants
(2100237, 2120019) for the NRP Nautilus cluster.

References
E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. 1984. Pyramid

methods in image processing. RCA Engineer 29, 6 (1984), 33–41.
Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P Srinivasan. 2021. Mip-NeRF: A multiscale representation for
anti-aliasing neural radiance �elds. In International Conference on Computer Vision.
5855–5864.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman.
2023. Zip-nerf: Anti-aliased grid-based neural radiance �elds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 19697–19705.

Yash Belhe, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and
Tzu-Mao Li. 2023. Discontinuity-Aware 2D Neural Fields. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 42, 6, Article 217 (2023), 11 pages.

Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milos
Hasan, Yannick Hold-Geo�roy, David J. Kriegman, and Ravi Ramamoorthi. 2020.
Neural Re�ectance Fields for Appearance Acquisition. CoRR abs/2008.03824 (2020).
arXiv:2008.03824 https://arxiv.org/abs/2008.03824

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learning
photographic global tonal adjustment with a database of input/output image pairs.
In CVPR 2011. IEEE, 97–104.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. 2017. A point set generation network for
3d object reconstruction from a single image. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 605–613.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. 2020. Multiplicative
�lter networks. In International Conference on Learning Representations.

Ned Greene and Paul S Heckbert. 1986. Creating raster Omnimax images from multi-
ple perspective views using the elliptical weighted average �lter. IEEE Computer
Graphics and Applications 6, 6 (1986), 21–27.

Paul S. Heckbert. 1989. Fundamentals of Texture Mapping and Image Warping. Technical
Report. EECS Department, University of California, Berkeley.

PedroHermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski.
2018. Monte carlo convolution for learning on non-uniformly sampled point clouds.
ACM Transactions on Graphics (tog) 37, 6 (2018), 1–12.

Hugues Hoppe. 1996. Progressive meshes. In SIGGRAPH. 99–108.
Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen Ma.

2023. Tri-miprf: Tri-mip representation for e�cient anti-aliasing neural radiance
�elds. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
19774–19783.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

David B Lindell, Dave Van Veen, Jeong Joon Park, and GordonWetzstein. 2022. BACON:
Band-limited coordinate networks for multiscale scene representation. In Computer
Vision and Pattern Recognition. 16252–16262.

Selena Ling, Merlin Nimier-David, Alec Jacobson, and Nicholas Sharp. 2025. Stochastic
Preconditioning for Neural Field Optimization. ACM Trans. Graph. 44, 4 (2025).

Junchen Liu, Wenbo Hu, Zhuo Yang, Jianteng Chen, Guoliang Wang, Xiaoxue Chen,
Yantong Cai, Huan-ang Gao, and Hao Zhao. 2024. Rip-NeRF: Anti-aliasing radiance
�elds with ripmap-encoded platonic solids. In ACM SIGGRAPH 2024 Conference
Papers. 1–11.

G Lowe. 2004. Sift-the scale invariant feature transform. Int. J 2, 91-110 (2004), 2.
Youssef Mansour and Reinhard Heckel. 2023. Zero-shot noise2noise: E�cient image

denoising without any data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 14018–14027.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
4460–4470.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance �elds
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Felix Mujkanovic, Ntumba Elie Nsampi, Christian Theobalt, Hans-Peter Seidel, and
Thomas Leimkühler. 2024. Neural Gaussian Scale-Space Fields. ACM Transactions
on Graphics 43, 4 (2024).

Ntumba Elie Nsampi, Adarsh Djeacoumar, Hans-Peter Seidel, Tobias Ritschel, and
Thomas Leimkühler. 2023. Neural Field Convolutions by Repeated Di�erentiation.
ACM Trans. Graph. 42, 6, Article 206 (Dec 2023), 11 pages. https://doi.org/10.1145/
3618340

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF conference on computer vision and

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

https://project.inria.fr/nerphys/
https://arxiv.org/abs/2008.03824
https://arxiv.org/abs/2008.03824
https://doi.org/10.1145/3618340
https://doi.org/10.1145/3618340


10 • Mustafa B. Yaldiz, Ishit Mehta, Nithin Raghavan, Andreas Meuleman, Tzu-Mao Li, and Ravi Ramamoorthi

pattern recognition. 165–174.
Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Ham-

precht, Yoshua Bengio, and Aaron Courville. 2019. On the spectral bias of neural
networks. In International conference on machine learning. PMLR, 5301–5310.

Ali Rahimi and Benjamin Recht. 2007. Random features for large-scale kernel machines.
Advances in neural information processing systems 20 (2007).

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF
Compression and Interpolation. Comput. Graph. Forum (Proc. Eurographics) 38, 2
(2019).

Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and
Ashok Veeraraghavan. 2022. Miner: Multiscale implicit neural representation. In
European Conference on Computer Vision. 318–333.

Shayan Shekarforoush, David Lindell, David J Fleet, and Marcus A Brubaker. 2022.
Residual multiplicative �lter networks for multiscale reconstruction. Advances in
Neural Information Processing Systems 35 (2022), 8550–8563.

Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand.
2021. Light �eld networks: Neural scene representations with single-evaluation
rendering. Advances in Neural Information Processing Systems 34 (2021), 19313–
19325.

Venkataram Sivaram, Tzu-Mao Li, and Ravi Ramamoorthi. 2024. Neural Geometry
Fields For Meshes. In SIGGRAPH Conference Proceedings. Article 29, 11 pages.

Ying Song, Jiaping Wang, Li-Yi Wei, and Wencheng Wang. 2015. Vector Regression
Functions for Texture Compression. ACM Trans. Graph. 35, 1, Article 5 (2015).

Kenneth O Stanley. 2007. Compositional pattern producing networks: A novel ab-
straction of development. Genetic programming and evolvable machines 8 (2007),
131–162.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and RenNg. 2020. Fourier
features let networks learn high frequency functions in low dimensional domains.
Advances in neural information processing systems 33 (2020), 7537–7547.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing 13, 4 (2004), 600–612.

Lance Williams. 1983. Pyramidal parametrics. In Proceedings of the 10th annual confer-
ence on Computer graphics and interactive techniques. 1–11.

Andrew P Witkin. 1987. Scale-space �ltering. In Readings in computer vision. Elsevier,
329–332.

Liwen Wu, Sai Bi, Zexiang Xu, Fujun Luan, Kai Zhang, Iliyan Georgiev, Kalyan
Sunkavalli, and Ravi Ramamoorthi. 2024. Neural Directional Encoding for E�-
cient and Accurate View-Dependent Appearance Modeling. In CVPR.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Fed-
erico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022. Neural
�elds in visual computing and beyond. Comput. Graph. Forum (Proc. Eurographics
STAR) 41, 2 (2022), 641–676.

Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and Zhangyang Wang. 2022. Signal
processing for implicit neural representations. Advances in Neural Information
Processing Systems 35 (2022), 13404–13418.

Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas
Funkhouser, Bharath Hariharan, and Serge Belongie. 2022. Polynomial neural �elds
for subband decomposition and manipulation. Advances in Neural Information
Processing Systems 35 (2022), 4401–4415.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The
unreasonable e�ectiveness of deep features as a perceptual metric. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 586–595.

Denis Zorin, Peter Schröder, and Wim Sweldens. 1997. Interactive multiresolution
mesh editing. In SIGGRAPH. 259–268.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



Spectral Prefiltering of Neural Fields • 11

NFC Ours
Gaussian TrainedKernel Fitted Kernel Prediction NGSSF GT

G
au
ss
ia
n

B
ox

L
an
cz
os

0.0 0.2

Fig. 6. Comparisons against Neural Field Convolutions (NFC) [Nsampi et al. 2023] and Neural Gaussian Scale-Space Fields (NGSSF) [Mujkanovic et al.

2024] for image filtering across Gaussian, Box, and Lanczos kernels. Our model supports controllable smoothing across families and anisotropic covariances

in a single forward pass. NFC parameterizes filters with Dirac impulses; it is reliable for isotropic/mild kernels but is capacity-limited for anisotropic and

non-polynomial families. NGSSF is tuned for Gaussian smoothing; we recalibrated its encoding for each family, but the filter family cannot be switched

explicitly at test time. Bo�om-right insets show frequency spectra; top-right insets show mean error. See the supplemental and website for additional results.

Images from Adobe FiveK; © original photographers/Adobe.
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Fig. 7. Filter generalization on SDFs. Comparisons against recalibrated Neural Gaussian Scale-Space Fields [Mujkanovic et al. 2024] (NGSSF) for SDF filtering

with di�erent kernels. Insets at the top-right represent the distance to the ground truth mesh, darker is be�er. Our model shows closer geometry to the

ground-truth compared to NGSSF. Mesh models from the Stanford 3D Scanning Repository; © Stanford Computer Graphics Laboratory.
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